Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Respir Med ; 209: 107155, 2023 04.
Article in English | MEDLINE | ID: covidwho-2242077

ABSTRACT

BACKGROUND: Hyperbaric oxygen therapy (HBOT) has been proposed to address COVID-19- associated respiratory failure. However, its biochemical effects are poorly known. METHOD: 50 patients with hypoxemic COVID-19 pneumonia were divided into C group (standard care) and H group (standard care plus HBOT). Blood was obtained at t = 0 and t = 5 days. Oxygen saturation (O2 Sat) was followed up. White blood cell (WC) count, lymphocytes (L) and platelets (P) and serum analysis (glucose, urea, creatinine, sodium, potassium, ferritin, D dimer, LDH and CRP) were carried out. Plasma levels of sVCAM, sICAM, sPselectin, SAA and MPO, and of cytokines (IL-1ß, IL-1RA, IL-6, TNFα, IFNα, IFNγ, IL-15, VEGF, MIP1α, IL-12p70, IL-2 and IP-10) were measured by multiplex assays. Angiotensin Converting Enzyme 2 (ACE-2) levels were determined by ELISA. RESULTS: The average basal O2 Sat was 85 ± 3%. The days needed to reach O2 Sat >90% were: H: 3 ± 1 and C: 5 ± 1 (P < 0,01). At term, H increased WC, L and P counts (all, H vs C: P < 0,01). Also, H diminished D dimer levels (H vs C, P < 0,001) and LDH concentration (H vs C, P < 0.01]. At term, H showed lower levels of sVCAM, sPselectin and SAA than C with respect to basal values (H vs C: ΔsVCAM: P < 0,01; ΔsPselectin: P < 0,05; ΔSAA: P < 0,01). Similarly, H showed diminished levels of TNFα (ΔTNFα: P < 0,05) and increased levels of IL-1RA and VEGF than C respect to basal values (H vs C: ΔIL-1RA and ΔVEGF: P < 0,05). CONCLUSION: Patients underwent HBOT improved O2 Sat with lower levels of severity markers (WC and platelets count, D dimer, LDH, SAA). Moreover, HBOT reduced proinflammatory agents (sVCAM, sPselectin, TNFα) and increased anti-inflammatory and pro-angiogenic ones (IL-1RA and VEGF).


Subject(s)
COVID-19 , Hyperbaric Oxygenation , Respiratory Insufficiency , Humans , SARS-CoV-2 , COVID-19/complications , COVID-19/therapy , Tumor Necrosis Factor-alpha , Interleukin 1 Receptor Antagonist Protein , Vascular Endothelial Growth Factor A , Respiratory Insufficiency/therapy
2.
Emerg Med J ; 39(2): 88-93, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1573947

ABSTRACT

BACKGROUND: Hyperbaric oxygen (HBO2) therapy has been proposed to treat hypoxaemia and reduce inflammation in COVID-19. Our objective was to analyse safety and efficacy of HBO2 in treatment of hypoxaemia in patients with COVID-19 and evaluate time to hypoxaemia correction. METHODS: This was a multicentre, open-label randomised controlled trial conducted in Buenos Aires, Argentina, between July and November 2020. Patients with COVID-19 and severe hypoxaemia (SpO2 ≤90% despite oxygen supplementation) were assigned to receive either HBO2 treatment or the standard treatment for respiratory symptoms for 7 days. HBO2 treatment was planned for ≥5 sessions (1 /day) for 90 min at 1.45 atmosphere absolute (ATA). Outcomes were time to normalise oxygen requirement to SpO2 ≥93%, need for mechanical respiratory assistance, development of acute respiratory distress syndrome and mortality within 30 days. A sample size of 80 patients was estimated, with a planned interim analysis after determining outcomes on 50% of patients. RESULTS: The trial was stopped after the interim analysis. 40 patients were randomised, 20 in each group, age was 55.2±9.2 years. At admission, frequent symptoms were dyspnoea, fever and odynophagia; SpO2 was 85.1%±4.3% for the whole group. Patients in the treatment group received an average of 6.2±1.2 HBO2 sessions. Time to correct hypoxaemia was shorter in treatment group versus control group; median 3 days (IQR 1.0-4.5) versus median 9 days (IQR 5.5-12.5), respectively (p<0.010). OR for recovery from hypoxaemia in the HBO2 group at day 3 compared with the control group was 23.2 (95% CI 1.6 to 329.6; p=0.001) Treatment had no statistically significant effect on acute respiratory distress syndrome, mechanical ventilation or death within 30 days after admission. CONCLUSION: Our findings support the safety and efficacy of HBO2 in the treatment of COVID-19 and severe hypoxaemia. TRIAL REGISTRATION NUMBER: NCT04477954.


Subject(s)
COVID-19 , Hyperbaric Oxygenation , Humans , Hypoxia/etiology , Hypoxia/therapy , Middle Aged , Oxygen , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL